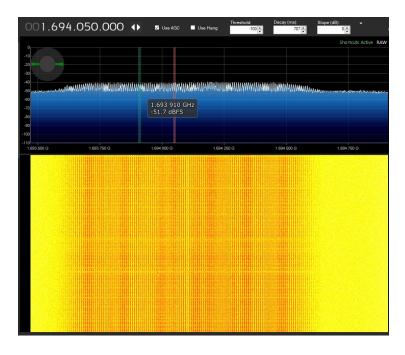
# **GOES-16 Satellite Receiver**

SDmay20-03

Advisor/Client: Dr. Nathan Neihart

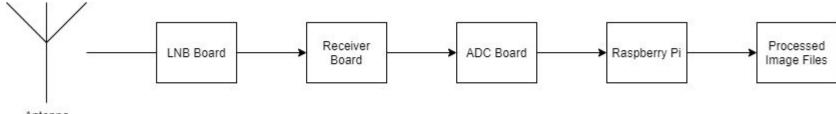
Members: Ted Mathews, Jonathan Massner, Riley Stuart, Yong Yi "Rudy" Lim, Nick Butts, Jordan Tillotson

http://sdmay20-03.sd.ece.iastate.edu/


# **Project Plan**

# High Level Overview of the Project

The goal of this project is to receive, decode, and display weather products from NOAA's GOES-16 weather satellite.


### This project involves:

- Receiving and demodulating the analog signal (RF team)
- Digitizing the signal and transferring the data to Raspberry Pi 4 (ADC team)
- Decoding the data and image construction (software team)



Spectrum of GOES-16 signal as received by our antenna





Antenna



Antenna

Receiver

ADC

## Requirements

#### Functional

- The system must download a current Earth image from the GOES-16 satellite
- RPi4 will host a website to display information about the downloading process and full images

### Non-functional

- RF section:
  - System must receive 1694.1MHz signal with at least 1.205MHz of bandwidth from NOAA's satellite and output a baseband signal
- ADC section:
  - System must digitize the baseband signal and output received binary to Raspberry Pi, binary data stream must be stored on Raspberry Pi4 for further processing
- Software section:
  - Software must receive the binary information from the ADC, decode the information, and generate an image file

# **Technical Considerations**

Receiver architecture takes advantage a mix of SDR and superheterodyne strengths

### **ADC** capabilities

- Data rate
- Resolution
- Sampling rate
- Communication

### Software must compile and run on Raspbian

### **Computation limitations of RPi4**

• If the program is not well optimized the runtime can be unacceptably long

### Data stream storage

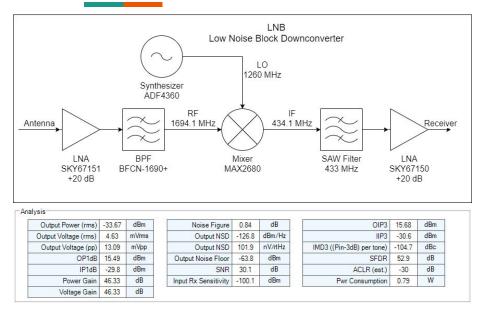
## **Potential Risks and Mitigation**

#### **Completion Risks**

- Risk to hardware exists by improper connection and powering of system components.
- Signal strength matching ensuring that the boosted signal is within tolerance for other system components.

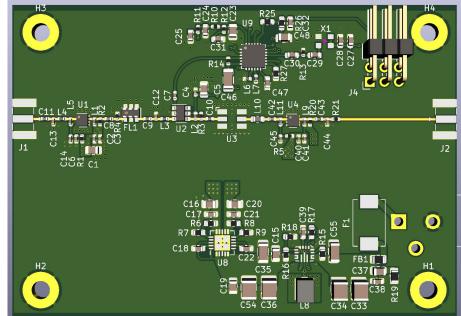
### **Physical and Environmental Risks**

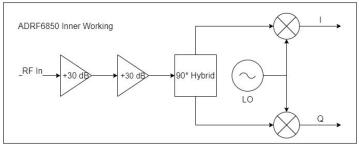
- Low Physical risk present when improperly transporting equipment such as the antenna.
- Risk of injury during PCB assembly
- Risk of damage to PCBs and test equipment from ESD events

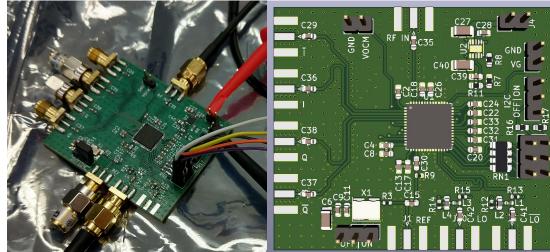

### **Risk Mitigation**

- Ensure AC coupling on inputs and outputs for RF systems and observe proper ESD mitigations
- Through calculations, testing, and datasheet analysis, ensure signal strength levels are appropriate
- Properly store and transport the system within Coover.

### **Resource/Cost Estimate**

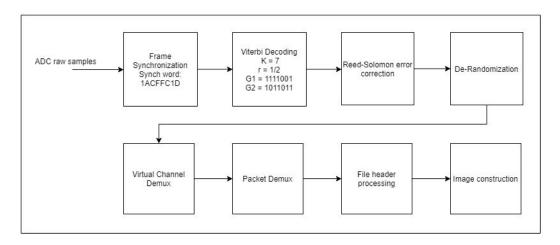

- Most of the costs are for hardware
  - Antenna
  - RF Boards, Components, RF Cables, and Connectors
  - ADC board and filtering components
  - Raspberry Pi 4
- Software is open-source
  - libcorrect from Github
  - Source code will be implemented in parts on an as needed basis
- Total cost estimate is approximately
  - o **650\$**


# System Design




#### LNB

- ~46 dB of gain
- 0.84 dB NF
- ~30 dB SNR

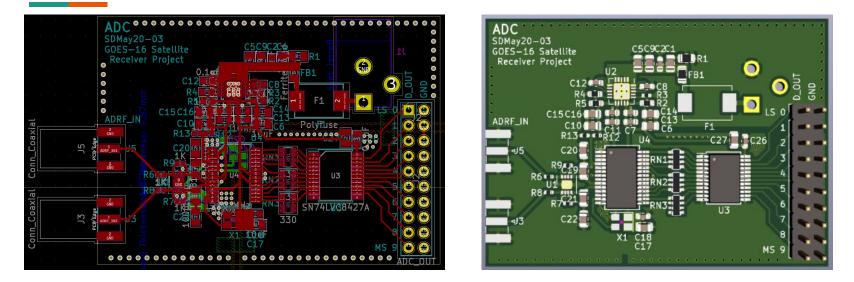







### Receiver

- Input: 433.1 MHz from LNB
- Up to 60 dBo of gain
- ~ 11 dB noise figure at 39 dB of gain




### ADC and the Raspberry Pi

- Input: analog I & Q data from the ADRF6850
- **Output**: binary data stream to RPi4 for further processing

### Software on the Raspberry Pi

- Input: 8 bit raw samples from the ADC
- **Output:** full-disk images of Earth



- Process began with designing a Sallen-Key low-pass filter built around a fully-differential op-amp
- MAX1426 ADC chip was chosen because of its bit-depth and sampling capabilities (10-bit, 10 Msps)
- Component choices based on low noise and compatibility
- MAX1425/1426 Eval board documentation used for layout reference

# Hardware Platforms Used

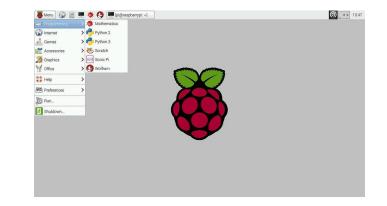
#### Prototyping

- STM32F303 Nucleo (microcontroller development board)
  - Changed to MAX1426 DS
- Raspberry Pi3/Pi4
- ADRF6850 I/Q Demodulator development board

### **Final Implementation**

- ADRF6850 I/Q Demodulator
- LCOM 2.4GHz 24 dBi Dish Antenna
- SKY67151 LNA
- BFCN-1690 BPF
- MAX2680 Mixer
- ADF4360 Synthesizer
- MAX1426 DS ADC
- Raspberry Pi4






LCOM 2.4GHz 24 dBi Dish

# **Software Platforms Used**

#### Raspbian OS

- Operating system for Raspberry Pi4
- Code::blocks for cross-platform software development
- Python for packet demux and image construction



### **Test Plan**

#### **RF** Team

- 3 stages of testing for both the LNB and receiver.
  - **Electrical:** Ensuring that the board was assembled properly. Checking power supplies, IC outputs, and signal levels.
  - **Functional:** Inputting generated RF signals to determine the performance of the signal path.
  - **Operational:** Attach LNB and Receiver to the antenna and view the received signal on a spectrum analyzer.

### **ADC** Team

- **Receiver to ADC:** Spice design and testing of Sallen-key lowpass filter (fc ~ 1.5MHz), interface with the follow-on ADC and PLL circuitry and test in Spice simulations
- **ADC to PI:** Test arbitrary 1.2 MHz signal coming into GPIO of Pi, ensuring that a binary file with correct bit formatting will be written in the desired storage location

### Software Team

• Used sample data file from Lucas Teske's blog to test code as it was developed

# **Prototype Implementations**

#### **RF** Team

- Antenna assembled, tested with SDR
- Receiver prototype has been implemented and tested
- LNB board schematic and layout finished

### **ADC Team**

- First prototype included the use of an STM32 microcontroller for ADC and communication
- Second approach removed the use of the microcontroller and replaced it with a discrete ADC
  - ADC board schematic and layout finished

### Software Team

- Frame synchronization, Viterbi decoding, Derandomization, Virtual channel demuxer functional
- Packet demuxer script tested but not fully functional

# **Engineering Standards and Design Practices**

- Agile Development
- IEEE 145-2013: IEEE Standard for Definitions of Terms for Antennas
- IEEE 149-1979: IEEE Standard Test Procedures for Antennas
- IEEE Standard 211-2018: IEEE Standard Definitions of Terms for Radio Wave Propagation

# Conclusion

### **Project Status**

#### **RF** Team

- Antenna
  - Antenna assembled, tested, and functional
- Receiver
  - Board fabricated, testing began, error found and fixed, further testing halted
- LNB
  - Schematic and layout complete

### **ADC** Team

- ADC board schematic and layout completed
- Upon course instruction moving to strictly online, the ADC team was able to focus more time assisting the Software team

### Software Team

- Frame synchronization, Viterbi decoder, de-randomization completed and tested
- Virtual channel demuxer functional and outputs demuxed channel data in binary files
- We have identified Python scripts that may do the rest of the processing, but were unable to get it working

# **Team Member Contributions**

#### Ted Mathews - RF Design and Testing

• SME, All system component recommendations, Antenna tripod build, Antenna assembly and modification, RF circuit design and layout

#### Jonathan Massner - RF Design and Testing, System Design

• Antenna assembly, RF circuit design and layout, system integration, managerial tasks

### **Riley Stuart - ADC Design and Testing**

• Initial implementation, configuration, testing of microcontroller; data transfer and communication from ADC to PI

### Jordan Tillotson - ADC Design and Testing

• STM32F303 Nucleo communication with Raspberry Pi4, ADC circuit design and layout

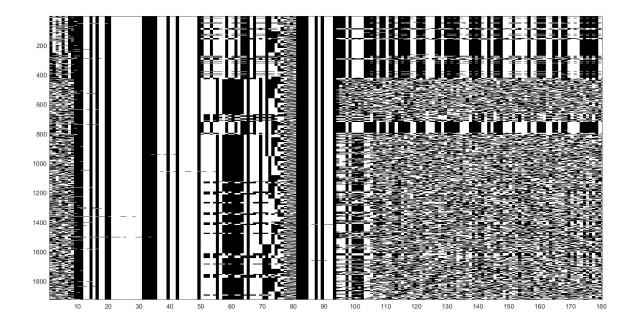
### Nick Butts - Software/DSP Development

• Wrote program to do frame synch, decode, de-randomize, and demux virtual channels

### Yong Yi Lim - Software/DSP Development

• Finished Reed-Solomon Error Correction and Viterbi Decoder Code

### **Future of the Project**


- Project will be carried forward into future semesters and completed by a different team.
- All existing documentations and code have been uploaded to GitLab for use.
- Substantial progress has been made in all areas of the project and everything has been documented well, so we are confident another Senior Design team can finish this project.

# **Works Cited**

Teske. "Satellite Projects." Lets Hack It, 28 Oct. 2016, lucasteske.dev/satcom-projects/satellite-projects.

Quiet. "Quiet/Libcorrect." GitHub, 10 Oct. 2018, github.com/quiet/libcorrect.

### **Extra Slides**

